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Abstract

Computing the aesthetic quality of an image has gained
attention in recent years. One application is mining good
quality images to show users. However, people have differ-
ent opinions on image quality and aesthetic. We design a
probabilistic graphical model that takes into account per-
sonal taste to predict personalized image aesthetic scores
on a scale of 1 to 5. We experiment with different image
features and evaluate the system using a large real-world
dataset and find strong improvement over competitive base-
lines. We also show that our approach is particularly useful
to users who annotate only a small number of image aes-
thetic scores.

1. Introduction
The number of images on the internet is massive and

growing rapidly. Many internet companies such as Pinter-
est and Facebook are becoming more reliant on using im-
ages to engage users. It is imperative to automatically iden-
tify images that users will find appealing. Recent work has
focused on building recommendation systems that predict
image quality. However, users don’t always find the same
images equally aesthetically pleasing. Therefore it’s impor-
tant to design a personalized model that takes into account
users’ unique tastes.

Kong et al. (2016) [7] have developed the Abstract Aes-
thetics and Attribute Database (AADB) to foster research
in exactly this area. In this dataset, annotators provide a
1-5 start rating of the overall aesthetic score for thousands
of real-world images. Additionally, workers annotate the
presence or absence of certain image attributes which have
historically been used to judge image quality, such as good
lighting, rule of thirds, etc. Figure 2 shows some examples
of images and their aesthetic ratings.

Multiple workers annotate each image. It is often the
case that workers give different scores to the same image.
This highlights the importance of personalization in the
field of image aesthetic prediction. Our goal is to design
a system that learns users’ unique taste. A challenge that

Figure 1: This plot shows the number of images each
worker annotated. There is a long tail of workers who an-
notated very few images (based on Figure 6 in Kong et al.
(2016)).

comes with personalization is the fact that many users only
annotate a small number of images. Figure 1 shows the dis-
tribution of the number of images rated versus worker in-
dex. The ideal prediction system will require only minimal
input from the user.

Our method requires (1) appropriate image features and
(2) a good prediction model. We extract features from fully
connected layers of a convolutional neural network pre-
trained on ImageNet and fine tuned on AADB. The archi-
tecture is described in more detail in Section 3.1. These
features are used with a probabilistic graphical model that
effectively clusters users into topics. This model allows us
to predict the overall aesthetic score for a given image and
user, even if the image has not been rated by other users
before. This model also allows us to achieve better results
than state of the art methods, especially for users with few
ground truth ratings to train on. Section 3.2 describes this
graphical model in more detail.
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(a) Ratings ∈ (2, 3, 3, 4, 4) (b) Ratings ∈ (5, 5, 5, 5, 5)

(c) Ratings ∈ (1, 1, 3, 4, 5) (d) Ratings ∈ (1, 1, 1, 2, 2)

Figure 2: Some images in the AADB dataset with their five ratings.

2. Related Work

Kong et al. (2016) [7] propose a method for predicting
image aesthetics from content and certain photometric im-
age attributes. They created the AADB dataset to train and
evaluate their model. Their approach is to fine tune a mod-
ified version of AlexNet [10] (see Figure 3) on AADB to
predict overall image aesthetic rating. However, this pre-
diction is global, i.e. does not depend on the user.

Lu et al. (2015) [11] use CNNs to classify real-world
images into two categories, either low-aesthetic or high-
aesthetic images. Dhar et al. (2011) [2] also train a CNN to
classify images into these two categories, but they instead
use high-level human describable image attributes. While
we also use CNN features, our model performs regression
to predict a score in the range of 1-to-5.

There is also previous work on the closely related prob-
lem of image recommendation. Fan et al. (2009) [3] develop

an interactive interface for users to explore and search im-
ages from Flickr. Geng et al. (2015) [4] propose a deep
model that learns a unified feature representation for both
users and images. These two works are similar to our work
in that we share personalization as a goal. However, our
work is different because our goal is to predict image aes-
thetic ratings.

With respect to personalized predictions, Kovashka and
Grauman (2013) [8] propose an adaptive SVM and Rank
SVM approach to predict user attribute labels and apply to
image search. Their following work [9] improve on that by
clustering users into ‘schools of thought’ and adapt the pre-
dictions to each school. We use this as a baseline to compare
our method against.

Modeling annotators is a core problem in crowdsourc-
ing. Most previous work in this space focuses on improv-
ing the aggregated labels [18, 14, 17], assuming that the
difference in labels for different users is ‘noise’. This is
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in contrast with our work where we model individual user.
Our method builds on the model proposed by Nguyen et
al. (2016) [12] for identifying ‘unreliable ratings’ and ‘un-
reliable crowd workers’. Here, we assume that all ratings
and users are reliable and try to predict the personalized rat-
ings for unseen images. This is a reasonable assumption
since Kong et al. (2016) has experiments showing that the
ratings they collected are highly reliable. Technically, we
generalize Nguyen et al. (2016)’s Beta-Bernoulli model for
two topics to a Dirichlet-Categorical model for an arbitrary
number of topics.

3. Method
As mentioned, our method is two-fold. First we find an

appropriate image representation, then we use this represen-
tation along with per-user ratings to train a graphical model.
Section 3.1 discusses feature extraction in detail. Section
3.2 describes the graphical model in detail.

3.1. Features Extraction

We experiment with several different image features, all
of which are extracted from fully connected layers of con-
volutional neural networks. We used off-the-shelf mod-
els of the popular CNNs VGG16 [15], ResNet152 [5], and
GoogLeNet [16], all pre-trained on ImageNet. We also test
features from these networks after fine tuning on AADB
star ratings. Finally, we extract features from a network
provided by Kong et al.

We used Caffe [6] to fine tune VGG16 and ResNet152
to predict average aesthetic rating for each image. We use
regression loss

Lossi = ‖yi − f(xi)‖22

We reduced the learning rate by a factor of 10 for later con-
volution layers. For earlier convolution layers, we dropped
the learning rate to zero to prevent these weights from
changing. We also reduced the dropout percentage in final
layers.

Finally, we tried extracting features from a network pro-
vided by Kong et al. This network, shown in Figure 3, is
based on AlexNet but has some important additional layers.
There are parallel fully connected (fc8) and classification
layers for each of the binary image attributes. The output
vectors of all fc8 layers are then concatenated and fed to a
final fully connected layer (fc10). The output of this final
fc10 layer is used to predict a single overall aesthetic score.

3.2. Rating Prediction

Given the extracted features for each image, we next
build a model that predicts the ratings that a particular user
will give to some new images. Two obvious baselines are:
(1) A single model for all users and (2) A model for each

Figure 3: Network architecture provided by Kong et al.
Each photographic attribute has a fully connected layer.
Some attribute layers have been removed for simplicity.
The top of the network is also not shown for simplicity. It
is the same as AlexNet.

user. In the former, we ignore the difference in the prefer-
ence of the users to train the model on all the rating data.
In the latter, for each user, we train a model on his (or
her) ratings, ignoring the ratings of other users. Although
the model here can be any regression method, we consider
Linear Regression (LR) without features engineering tech-
niques such as kernels. Since the features are extracted from
complex neural network architectures, we expect that fur-
ther features engineering is not necessary and LR to be suf-
ficient. The two baselines are two extremes and a ‘middle
ground’ is often desired. An easy way to do that is to use
the idea of domain adaptation: consider all ratings to be the
source domain and each user’s ratings to be a target domain.
We first train a single model for all users then adapt that
model to each user. There are a large number of domain
adaptation algorithms. Here, we consider ‘Adaptation by
Weighting’, a simple, efficient and well-performed method
in our experiments. In this method, for each user, we train
a weighted predictive model with higher weights for ratings
given by that user. The weights are set using the Validation
set. We will use ‘Adaptation by Weighting’ as a baseline
and also as a component in our proposed method, which we
now present.
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Figure 4: The factor graph for our method. Circles represent
random variables where shaded ones are observed. Plates
represent repetitions. The dotted plate is a gate where the
value of Zij selects which Normal distribution will generate
Rij . Note that we do not have the ratings for all user-image
pairs.

Model Definition: The method we propose is a Proba-
bilistic Graphical Model, which defines a joint distribution
over some variables of interest. Let Rij be the rating for
image i given by user j, xi be the features of image i. We
assume that for each ratingRij , there is a latent variable Zij

indicating the topic that this rating belongs to, where topics
are LR models. Specifically, let wt be the parameter for
topic t, we have:

Rij |Zij = t ∼ Normal(wt · xi, σ
2
t ) (1)

which means that given Zij indicates the topic t, Rij are
generated from a Normal distributions with mean wt·xi and

variance σ2
t . The topic indicator Zij are generated from a

Categorical distribution with parameters θj . θj are then the
topic distribution for user j and has a conjugate Dirichlet
Prior:

Zij ∼ Cat(θj) (2)
θj ∼ Dir(A) (3)

where θj and A are both vectors of T dimensions, where T
is the number of topics. Figure 4 is the factor graph for our
method.

Learning: We learn the parameters wt using the Ex-
pectation Maximization (EM) algorithm [1]. This algorithm
iterates between the E step and the M step until convergence
(or reaching the maximum number of iterations). In the E
step, it infers the posterior distribution over the hidden vari-
ables. In the M step, it fits the parameters wt by maximizing
the likelihood under the expectation of the posterior inferred
in the last E step. For efficiency, we treat only Zij as hidden
variables and θj ,wt and σ2

t as parameters. The prior pa-
rameters A is used as a smoothing constant for estimating
θj .

In the E step, we evaluate the posterior:

pijt =Pr(Zij = t|R) ∝ Cat(Zij = t|θj) (4)

Normal(Rij |wt · xi, σ
2
t ) (5)

In the M step, we first estimate θ as by normalizing the
posterior pijt, smoothed by the prior A.

θjt =

∑
i pijt +At∑
i,t pijt +At

(6)

To estimate wt and σ2
t , we simple train a weighted LR

model for each topic using the posterior pijt as the weights.
Our implementation trains the LR model using Stochastic
Gradient Descent, provided by the package Scikit-Learn
[13].

Since the EM algorithm only provides locally optimized
solutions, a good initialization is important. We initialize
the topics distribution for each user θj using the following
heuristic. For each user j with more than K ratings, we
create a topic and set θj to be a one-hot vector (with 0 ev-
erywhere and 1 in the index of the topic). The idea is that
for each user with ‘enough’ ratings, we create a topic specif-
ically for learning his (or her) preference. For each user j
with less than K ratings, we set the vector θj to be uniform
over the topics. The value of K is set using the validation
set. We also have an experiment to analyze the sensitivity
of our method to the choice of K.

4. Evaluation
What experiments did you run to evaluate the idea?

What is the main purpose of each experiment, and what can
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you conclude from the results? Can you make any com-
parisons with alternative approaches? Provide figures and
examples as appropriate. Also comment briefly on what
software, libraries, datasets, etc. you used. The analysis
and your interpretation of the results are most important for
this part of the paper. Be sure to answer not only what you
did, but also why, and what the outcomes indicate.

4.1. Setup

Data: The AADB dataset released by Kong et al.
(2016)[7] contains nearly 10,000 images with 5 ratings
each. We split the data into 60% Train, 20% Validation and
20% Test. We use the Validation set to develop our method
and set some hyper-parameters. We fix all the decisions and
parameters before running on the Test set (which we did
only once).

Metric: Each method that we evaluate is given the im-
ages, the ratings, and the user identities. At test time, the
method is given a set of new images and user IDs and must
predict the personalized ratings. We compare the predicted
ratings to the true ratings and use the Root Mean Squared
Error (RMSE) metric.

Baselines: We compare our method to the following
baselines. (1) A single LR model for all users (Single). (2)
An LR model for each user (User). (3) Adapt the Single LR
model to each user by weighting the ratings for the users
(Adapt by weight). Ratings by the user we want to adapt to
have higher weights, which are set by the Validation set. (4)
Shades of Meaning [9]. For the last, we follow the authors
to implement the method using the same Bayesian Matrix
Factorization package by Xiong et al. (2010) [19] with the
same parameters and cluster the users using K-means with
K selected by silhouette coefficient to discover ‘schools of
thoughts’, as described in the paper. For adapting to those
‘schools of thoughts’, since our task is regression, we use
Linear Regression with adaptation by weight (similar to the
baseline (3)), instead of the adaptive support vector machine
method [20] used by the authors.

All the baselines use the best features that we get in the
following comparison.

4.2. Comparison of the extracted features

In the first experiment, we compare the images features
that we extract using different neural network architectures.
The purpose of this is to identify the best features for our
task. The first in our comparison is the CNN provided
by Kong et al. (2016) [7], which is an AlexNet [10] pre-
trained on ImageNet and fine-tuned on AADB. The fine-
tuning is done with both the 1-to-5 rating and the image aes-
thetic attributes (lighting, color, etc). Although AlexNet has
achieved good performance on many vision tasks, recent
work has proposed other CNN architectures with favorable
results, including GoogleNet [16], VGG [15] and ResNet

Features RMSE
AlexNet fine-tuned 0.831

GoogleNet 0.986
VGG 0.980

VGG fine-tuned 0.965
ResNet 0.998

ResNet fine-tuned 1.039

Table 1: Root Mean Squared Error (RMSE) of the different
features with predictions by ‘Adapt by weight’. The results
are on the Validation set.

Method mean RMSE std RMSE
Single 0.9369 0.0007
User 1.0487 0.0026

Adapt by weight 0.8392 0.0012
Shades of Meaning 0.9376 0.0048

Ours 0.8355 0.0012

Table 2: Comparison of our method against baselines by
Root Mean Squared Error (RMSE) on the Test set. We re-
port the mean and standard deviation in 10 bootstrap re-
samples of the training data.

[5]. We compare these networks using both the original
version (pre-trained on ImageNet) and the those fine-tuned
on the AADB dataset. Our fine-tuning uses only the 1-to-5
ratings.

To compare the features, we use ‘Adapt by weight’ to
train a predictive model for the user ratings. The choice of
‘Adapt by weight’ is due to its good performance in our pre-
liminary experiments. The results, in RMSE in the Valida-
tion set, are in Table 1. AlexNet performs surprisingly well,
with the lowest RMSE, which suggest that using aesthetic
attributes for fine-tuning is important. Our fine-tuning, us-
ing only the 1-to-5 ratings, improve VGG but not ResNet.
We hypothesize that the very deep structure of ResNet is a
difficulty. In the next section, we use the features extracted
from the fine-tuned AlexNet for comparing all the predic-
tion models.

4.3. Comparison of the prediction methods

In Table 2, we compare our prediction method to the
baselines. The results are on the Test set, which we run
after fixing all hyper-parameters. We report the means and
standard deviations in 10 bootstrap re-samples of the train-
ing data to assess whether the difference is significant. For
the first two baselines, we see that Single performs bet-
ter than User. Single has the advantage of training on all
the ratings but its predictions are not personalized. User
is personalized but has very little data to train models for
the users who provided a few ratings, which probably ex-
plains its poor performance. ‘Adapt by weight’ is a simple
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Figure 5: RMSE for Adapt by Weight and our method in
four groups of users: (1) those with 10 ratings or less, (2)
those with more than 10 but at most 100 ratings, (3) those
with more than 100 but at most 1000 ratings and (4) those
with more than 1000 ratings.

Figure 6: RMSE of our method with varying K in the Vali-
dation and Test set. We see that the numbers vary in a range
of less than 0.007

way of getting the best of both: train on all the data and
personalize to each user. This baseline achieves significant
improvement. ‘Shades of Meaning’ has some improvement
over User but does not seem to work well. We hypothesize
that this method has clustered users with different prefer-
ence into the same ‘school of thought’ and therefore fails to
provide a more personalized prediction. The clustering is
done by K-means using user features inferred by Bayesian
Matrix Factorization. For users with very few ratings (e.g.
10 or less), a feature vector withD = 50 dimensions proba-
bly contains more noise than signal. Furthermore, this user
clustering is based only on their ratings and is independent
of the image features.

We find that our method has the best performance. The
small values of the standard deviations suggest that this im-
provement is significant: our mean RMSE is more than 3
standard deviations away from the second-best Adapt by

weight. To further understand the improvement, we plot the
RMSE for our method and the second-best baseline ‘Adapt
by weight’ with a varying number of ratings the users have
provided in Figure 5(see the caption). We observe that most
of the improvement is for users with very few labels (100
to 10 or less). One may ask how our method can learn their
preference with so few ratings. Recall that in the E step, for
each rating, we calculate the posterior distribution over the
topics. These posterior distributions are used to discover the
preference for each user, by estimating his (or her) topic dis-
tribution. Our flexible approach of using a ‘soft clustering’
for both users and ratings is responsible for the improve-
ment, in our opinion.

In an additional experiment, we study the sensitivity of
our method with respect to the hyper-parameter K (the rat-
ings threshold for our heuristic in initializing the EM algo-
rithm). In Figure 6, we report our performance in RMSE
with varying Ks. We can see relatively small variations,
suggesting that our method is not sensitive to K.

5. Conclusion
We have presented our approach to predicting personal-

ized image aesthetic ratings. The approach consists of fea-
tures extraction using neural network architectures and pre-
diction model that discovers user preferences and represents
them in terms of topics.

Experiments in a real dataset of aesthetic ratings by users
in Amazon Mechanical Turk show our strong improvement
over competitive baselines, especially for users with few
ratings. Other experiments also suggest that the improve-
ment is significant and that our method is not sensitive to
an important hyper-parameter. These are encouraging re-
sults and we expect them to generalize to other settings and
datasets.

In future work, we plan to use the same approach for
personalized attributes classification and investigate active
learning strategies in picking images for users to rate as well
as visualizing the learned topics.
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